現場のための水理学(3)

-掃流砂と河床変動-

荒井信行 清水康行

3. 流砂に関する基本的事項

河床上をある水深で水が流れると、河床の潤辺には単 位面積当たり τ_0 のせん断力が水塊に対して流れと逆方 向に働き、一方、流れは潤辺に対して流れと同方向に τ_0 の力を及ぼす。したがって、河床が非粘着性の砂礫で構 成されている場合には、この力は砂礫粒子を下流へ押し 流そうとするので、この τ_0 を 掃流力(河床せん断力) と呼んでいる。

図-3.1 のように、河床勾配 i_e の河川に等流状態で水 が流れるとき、流下方向に長さlの区間を考えると、以下 に示す手順により掃流力 τ_a が定義される。

l 区間の水塊の容積 *V*₁は,流積を *A* として次式で示 される。

 $V_l = Al$

l区間の水塊の重量Wは、水の密度を ρ 、重力加速度 をgとして次式で表される。

 $W = \rho g V_l = \rho g A l$

したがって、 Wの斜面方向の成分は次式となる。

 $W_x = W \operatorname{Sin} i_b \rightleftharpoons W i_b = \rho \, g A l \, i_b$

一方, *l* 区間の潤辺*S* に加わる全せん断力*T*は、次式のように表わされる。

 $T = \tau_0 Sl$

したがって、等流状態では流速は一定であるから、 W_x =T, すなわち、

図-3.1 掃流力の定義図

 $\rho gAl i_b = \tau_0 Sl$

となり、上式から掃流力 τ_0 は、径深をR(=A/S)として、

$$\tau o = pg \frac{A}{S} i_b = pg R i_b \tag{3.1}$$

で表わされる。

なお,(3.1)式は不等流においても,河床勾配 i_b の代わりにエネルギー勾配 i_b を用いると,近似的に次式で表わすことができる。

$$\tau_0 = \rho \, gRi_b \tag{3.2}$$

ただし,
$$i_e = -\frac{d}{dx} \left(\frac{aV^2}{2g} + H \right)$$
, $H : 基準水平面からの$
水位, $V : 平均流速$, $\alpha : エネルギー補正係$
数, $x : 下流方向の座標軸$

掃流力 τ_0 を流速の次元で次式のように定義したもの を 摩擦速度 といい、 u_* で表わす。

$$u_* \sqrt{\tau o / \rho} = \sqrt{gRi_e}$$
(3.3)

したがって、掃流力
$$\tau_0$$
は、
 $\tau_0 = \rho u^2$ (3.4)

とも書くことができる。

流砂現象を支配している要素には、流体、河床材料、 流れの性質があるが、それらにより作りだされる無次元 量のうち、きわめて重要なものに摩擦速度 u_* を無次元 表示した次式の 無次元掃流力 (無次元せん断力) τ_* が ある。

$$\tau^* = \frac{u_*^2}{sgd} = \frac{Ri_e}{sd}$$
(3.5)
ただし、S:砂粒の水中比重 $\left(S = \frac{\rho_s - \rho}{\rho}\right),$
 $\rho_s: 砂粒の密度, d:砂の粒径,$
 $i_e: エネルギーの勾配$

ある粒子が河床上にあるとき、河床における掃流力 τ_0 あるいは摩擦速度 u_* がある限界値を越えると粒子は移 動を開始する。この限界値をおのおの 限界掃流力 τ_c あるいは 限界摩擦速度 u_{*c} という。したがって、粒子 が移動するか否かについては、 τ_c あるいは u_{*c} を用いて 次の不等式で表すことができる。

静止…… $u_* < u_{*c}$ あるいは $\tau_0 < \tau_c$ 移動…… $u_* > u_{*c}$ あるいは $\tau_0 > \tau_c$ 限界摩擦速度 u_{*c} を摩擦速度と同様に無次元表示し

た 無次元限界掃流力 au_{*c} という。

 $\tau * c = \frac{u_{*c}^2}{sgd} \tag{3.6}$

限界摩擦速度 *u***c* を算出する方法は,古くから多くの 研究者により実験的,理論的に研究が進められてきたが, 現在一様粒径砂礫の限界掃流力の算定式としては,岩垣 の式¹⁾ が最もよいとされている。

岩垣の式を標準的な値、すなわち、砂粒の水中比重 $s \Rightarrow$ 1.65、動粘性係数 $v \Rightarrow 0.01 \text{cm}^2/\text{s}(20.3 \degree)$ 、重力加速度 $g = 980 \text{cm/s}^2$ を使用して書き表わすと、次式となる(cm -sec単位)。

 $d \ge 0.303 \text{ cm} ; u_{*c}^{2} = 80.9d$ $0.118 \le d \le 0.303 \text{ cm} ; = 134.6d^{31/32}$ $0.0565 \le d \le 0.118 \text{ cm} ; = 55.0d$ $0.0065 \le d \le 0.0565 \text{ cm} ; = 8.41d^{11/32}$ $d \le 0.0065 \text{ cm} ; = 226d$ (3.7)

(演習問題 5)

(1) 岩垣の式(3.7)式により, 粒径 d=5mm, 1mm, 0.1 mm のときの限界摩擦速度 u_{*c} および無次元限界掃流力 τ_{*c} を求めよ。

粒径 d>0.303cm の場合の t_{*c} を求めよ。

〔演習問題5の解答〕

1. 考 え 方

岩垣の式(3.7)式により河床砂の粒径 d(cm)がどの範囲に入るかを判定して u_{*c}^2 を求め、(3.6)式により τ_{*c} を計算する。ここで、砂の水中比重s=1.65、重力加速度g=980cm/s²とする。

2. 実際の計算

(1) d=5mm=0.5 cm のとき、(3.7)式より $d \ge 0.303$ で あるから、 $u_{*c}^2 = 80.9d = 40.45$ cm²/s²。ゆえに、 $u_{*c} = 6.36$ cm/s。したがって(3.6) 式より $\tau_{*c} = u_{*c}^2$ /sgd = 40.45/(1.65×980×0.5)=0.050 となる。

同様に、d=1mm=0.1cm とき、(3.7)式より 0.0565 $\leq d$ ≤ 0.118 cm であるから、 $u_{*c}^2 = 55.0d = 5.50 \text{ cm}^2/\text{s}^2$ 。ゆえに、 $u_{*c} = 2.35$ cm/s。したがって(3.6)式より $\tau_{*c} = 5.50/(1.65 \times 980 \times 0.1) = 0.034$ となる。

同様に、d=0.1mm=0.01cm のとき、 $u_{*c}=1.32$ cm/s、 $\tau_{*c}=0.107$ となる。

(2) $d \ge 0.303$ のとき, (3.7)式より $u_{*c}^2 = 80.9d$ であ

るから, τ_{*c}=80.9*d*/(*sgd*)=0.050 となる。

一般の河川では、 $d \ge 0.303$ の場合が多く、(2)で示したように $\tau_{*c} = 0.050$ (一定値)として計算されている。

(演習問題 6)

河幅 B=200m, 河床勾配 i_b =1/1000 の広矩形断面水 路を流量 Q=500m³/s が等流状態で流下している場合 について以下の設問に答えよ。ただし, Manning の粗度 係数 n=0.02 とする。

- (1) 等流水深 *h*₀ を求めよ。
- (2) 掃流力 τ₀ 求めよ。
- (3) 摩擦速度 *u**を求めよ。
- (4) 河床砂の粒径 d=1cm としたときの無次元掃流 τ_{*}, 限界摩擦速度 u_{*c}, 無次元限界掃流力 τ_{*c} を求めよ。た だし, 粒子の水中比重 s=1.65 とする。
- (5) 上記の水理条件で, 粒径 *d*=1cm の河床砂が移動す るかどうか判定せよ。
- (6) 上記の水理条件で,河床砂が移動しないようにする ためには, 粒系 *d* をなん cm 以上とするとよいか。

(7) 粒径 d=1cm の河床砂が移動しないためには,流量 Q はなん m^{3} /s 以下とするとよいか。

〔演習問題6の解答〕

1. 考 え 方

(1) 等流水深 h₀ は前出の(2.20)式で求める。

(2) 掃流力 τ_0 は,題意より広矩形断面水路であるので 径深 $R = h_0$,また流れは等流状態であるのでエネルギー 勾配 $i_e = i_b$ として(3.2)式で求める。

(3) 摩擦速度 u*は(3.3)式で求める。

(4) 無次元掃流力 τ_* は(3)で求めた u_* を用いて,砂の水 中比重s=1.65,重力加速度g=980cm/s²として(3.5) 式で求める。 u_{*c} は岩垣の式(3.7)式により求め,その u_{*c} を用いて(3.6)式より τ_{*c} を計算する。

(5) (3)で求めた $u_{*c} \geq (4)$ で求めた u_{*c} の大小関係を比較することにより、河床砂の移動が判定できる。すなわち、 $u_{*} \geq u_{*c}$ のときは河床砂は移動し、 $u_{*} < u_{*c}$ のときは河床砂は移動し、 u_{*c} のときは河床砂は移動し、 u_{*c} のときは静止状態である。

(6) ある水理条件のもとで、河床砂が移動しないために
 は、*u**<*u***c*を満足すればよいから、(3)で求めた*u**と岩垣の式(3.7)式より上式を満たす粒径 *d*をもとめればよい。

(7) 河床砂の粒径 d が与えられているとき,河床砂が移動しないためには, $u_* < u_{*c}$ を満たすような流量 Q を求めればよい。すなわち, u_{*c} は岩垣の式(3.7)式で求め,題意より $R \Rightarrow h_0$, $i_e = i_b$ として $u_* \in Q$ で書き換え, $u_* <$

 u_{*c} に代入して求める。

2. 実際の計算

(1) 等流水深 h₀ は前出の(2.20)式で求める。

$$h_o = \left(\frac{nQ}{B\sqrt{i_b}}\right)^{3/5} = \left(\frac{0.02 \times 500}{200 \times \sqrt{1/1000}}\right)^{3/5} = 1.316 \text{m}$$

(2) 掃流力 τ_0 は(3.2)式, すなわち $\tau_0 = \rho gRi_b$ で求める。 題意より広矩形断面水路であるので, $R = h_0$ 流れは等流 状態であるので $i_e = i_b$ として次のように求まる。なお, ρ g = 1(t/m³ あるいは g/cm³)である。

 $\tau_0 = \rho g h_0 i_b = 1 \times 1.316 \times \frac{1}{1000} = 0.001316 t/m^2$

(3) 摩擦速度 u_* は(3.3)式, すなわち $u_* = \sqrt{gRi_e}$ で求める。(2)と同様に $R \Rightarrow h_0$, $i_e = i_b$ として次のように計算される。

$$u = \sqrt{gh_o}i_b = \sqrt{9.8 \times 1.316 \times \frac{1}{1000}} = 0.1136 \text{ m/s}$$

(4) 無次元掃流力 τ_{*}は(3)で計算した。u*を用いて,
 (3.5)式により求める。

$$\tau^* = \frac{u_*^2}{sgd} = \frac{11.36^2}{1.65 \times 980 \times 1} = 0.0798$$

また,限界摩擦速度 *u***c* は(3.7)式より求まる。題意 より粒径 *d*=1cm≧0.303cm であるから,

 $u_{*c}^2 = 80.9d = 80.9 \text{cm}^2/\text{s}^2$, $u_{*c} = 8.99 \text{cm/s}$ ゆえに, 無次元限界掃流力 τ_{*c} は(3.6)式より次のよう に計算される。

 $\tau_{*c} = 0.050$

(5) (3)より $u_*=11.38$ cm/s, (4)より $u_{*c}=8.99$ cm/s であるから、 $u_*>u_{*c}$ となり、河床砂は移動する。

(6) 河床砂が移動しないためには、 $u*<u*_c$ を満たせば よい。すなわち、u*=11.38cm/s $<u*_c=\sqrt{80.9d}$ であるか

ら, 粒径*d*は,

 $d > 11.36^2/80.9 = 1.595$ cm

とすればよい。

(7) d=1cm で河床砂が移動しないためには、 $u_* < u_{*c}$ を満たせばよい。今、 $u_{*c} = 0.0899$ m/s であり、 u_* は、

$$u* = \sqrt{gh_{o}i_{b}} = \sqrt{g\left(\frac{nQ}{B\sqrt{i_{b}}}\right)^{3/5}i_{b}}$$

と書き表すことができるから、流量Qは、

$$Q < \frac{B\sqrt{i_b}}{n} \left(\frac{u_{s_c}^2}{gi_b}\right)^{5/3}$$
$$= \frac{200 \times \sqrt{\frac{1}{1000}}}{0.02} \left\{\frac{0.0899^2}{9.8 \times \frac{1}{1000}}\right\}^{5/3}$$
$$= 229.34 \text{m}^3/\text{s}$$

とすればよい。

(演習問題 7)

前出の(演習問題 3)で求めた流れのもとで,各断面において河床砂が移動しないためには,各断面の河床砂の粒径 *d*をなん cm 以上とするとよいか。

〔演習問題7の解答〕

1. 考 え 方

前出の〔演習問題3の解答〕により,各断面ごとの水 深*h* が求められているので,エネルギー勾配 *i*_e=

 $\left(\frac{nV}{h^{2/3}}\right)^2$ を求めて摩擦速度 u_* を計算し, $u_* < u_{*c}$ を満た すような粒径 dを求めればよい。ただし, Vは平均流 速, n は Manning の粗度係数である。

2. 実際の計算

摩擦速度 $u_* = \sqrt{gRi_e}$ であるから、各断面ごとの $i_e = \left(\frac{nV}{h^{2/3}}\right)^2$ を求めて u_* を計算し、 $u_* < u_{*c} = \sqrt{80.9d}$ となる d を求める。ここで平均流速 V は、流量 Q、河幅 B として V = Q/Bh で与えられる。

表-3.1 計算結果

断面 No.	区間距離 <i>Δx</i> (m)	河床高 <i>z</i> (m)	河 幅 <i>B</i> (m)	水 深 <i>h</i> (m)	平均流速 V (m/s)	エネルギー 勾配 i _e	摩 擦 速 度 <i>u</i> _* (cm/s)	粒 径 <i>d</i> (cm)
1	0	0	300	2.500	2.00	0.000737	13.44	2.23
2	500	0.5	320	2.381	1.97	0.000763	13.34	2.20
3	500	0.9	280	2.362	2.27	0.001024	15.40	2.93
4	200	0.8	250	2.653	2.26	0.000869	15.03	2.79
5	600	2.0	300	2.086	2.40	0.001351	16.62	3.41
6	300	2.3	300	2.187	2.29	0.001155	15.73	3.06
7	400	3.0	320	1.980	2.37	0.001412	16.55	3.39
8	500	3.0	350	2.598	1.65	0.000476	11.01	1.50
9	300	3.5	300	2.214	2.26	0.001106	15.49	2.97
10	500	4.0	250	2.262	2.65	0.001478	18.10	4.05

実際に、第1断面(h=2.50m, B=300m)を計算して みると、流量 Q=1500m³/s, Manning の粗度係数 n=0.025 であるから、

$$V = Q/Bh = 1500/(300 \times 2.50) = 2.00 \text{ m/s}$$

$$i_e = \left(\frac{nV}{h^{2/3}}\right)^2 = \left(\frac{0.025 \times 2.00}{2.50^{2/3}}\right)^2 = 0.000737$$

$$u_* = \sqrt{ghi_e} = \sqrt{9.8 \times 2.50 \times 0.000737} = 0.1344$$
 m/s

= 13.44 cm/s

となり、 $u_{*c} = \sqrt{80.9d} > u_{*}$ であるから、求める d(cm)は、

$$d > \frac{u_*^2}{80.9} = \frac{13.44^2}{80.9} = 2.33$$
 cm

である。

同様にして,各断面における*V*,*i*_e,*u**を計算し,*d* (*c*m)を求めた結果を表-3.1 に示す。

以上, 解答作成者 渡辺和好

4. 掃流砂量式

水の流れによって河床を構成する砂礫が移動する場合 に、その移動形式は大別して掃流と浮遊の2つがある。

[掃流砂]は砂礫が流水の流れ方向の抵抗力によって河 床付近を移動する流砂で, 浮遊砂]は流水の乱れによる 拡散作用によって上方に巻上げられ, 流路断面内を流水 とともに移動する流砂である。

実際の河川において,河床変動に対して支配的な影響 をもつのは掃流砂であり,浮遊砂が影響するのは粒径が 細かい河口部やダムにおける推砂問題の場合などであ る。

このように, 掃流と浮遊の力学的機構はまったく異 なっているため, 流砂問題を考える場合には, 掃流砂と 浮遊砂を分けて取扱うのが通常である。

したがって,まず掃流と浮遊の移動形式を判定するために必要な 浮遊限界の一般的な考え方について述べることにする。

今, 粒子の沈降速度を w_f, 流水の乱れによる上方への 粒子の移動速度を u_s とすると, 粒子が浮遊するか沈降す るかについて, 次の不等式が成立する。

浮遊····· $u_s > w_f$

沈降····· $u_s > w_f$

一般に, *u*s は *u**に比例するといわれており, *u*s の目 安として次の関係成立することが理論的,実験的に確 かめられている。

$$u_s = 0.6u_* \sim 0.93u_*$$
 (4.1)

浮遊限界は u_s/w_f=1 であるから, (4.1) 式より,

$$\frac{u_s}{w_s} = \frac{0.6u*}{wf} \sim \frac{0.93u*}{wf} = 1$$

すなわち,

$$1.08 < \frac{u*}{wf} < 1.67$$
 (4.2)

したがって, 掃流と浮遊の卓越領域は *u**と *w*fを用いて次のように書き表すことができる。¹⁾

掃流卓越領域·······
$$\frac{u^*}{wf} < 1.08$$
 (4.3)

掃流・浮遊の混在領域・・・・・1.08<
$$\frac{u^*}{wf}$$
<1.67 (4.4)

浮遊卓越領域·······1.67
$$< \frac{u*}{wf}$$
 (4.5)

ここで, 沈降速度 *w_f*を知る必要があるが, 沈降速度の 式としては, 次式の Rubey の実験式¹⁾がよく用いられる。

$$\frac{w_{f}}{\sqrt{sgd}} = \sqrt{\frac{2}{3} + \frac{36v^{2}}{sgd^{3}}} - \sqrt{\frac{36v^{2}}{sgd^{3}}}$$
(4.6)

ただし、v:水の動粘性係数(≒0.01cm²/s)

s:砂粒の水中比重(砂の標準値 1.65)

d:砂粒の粒径(cm)

 $g: 重力加速度(980 \text{ cm/s}^2)$

掃流砂に関する研究は、古くから多数の理論的・実験 的研究が行われ、多くの流砂量式が提案されている。上 述のように、掃流砂の運動は流水と河床面との境界付近 で発生する複雑な現象であるため、これらの流砂量式は 次元解析や流砂の運動機構のモデル化により誘導されて いる。したがって、その式形は研究者によりまちまちで あるが、関係するパラメータについてはかなり明確と なってきた。

しかしながら、これらの流砂量式のほとんどが、一様 砂礫を対象とした取扱いによって誘導されているため に、混合砂礫河床からなる実際河川への適用には注意が 必要である。また、実際河川では河床波の発生、変化に 伴って流れの抵抗も変化するが、このような河床波を考 慮した流砂量計算法もまだ確立されていない。

今、断面内の掃流砂量を $Q_B(m^3/s)$ 、単位幅当たりの 掃流砂量を $q_B(m^3/s)$ と書き表わすと、一般に q_B は無次 元掃流力 τ_* あるいは摩擦速度 u_* の関数、すなわち q_B = $f(\tau_*)$ あるいは $q_B = f(u_*)$ として与えられる。

本章では、これらの流砂量式のうち代表的な次の2式 について示す。

(1) 佐藤・吉川・芦田の式²⁾ (土研公式)

$$q_{B} = \frac{u_{*}^{3}}{sg} F\left(\frac{u_{*}^{2}}{u_{*c}^{2}}\right) f(n)$$
(4.7)

ここで, Manning の粗度係数を n として, n ≥ 0.025 の

図-4.1 $F(v_*^2/v_{*C}^2) \ge v_*^2/v_{*C}^2 \ge 0$ 関係

ときf(n) = 0.623, $n \le 0.025$ のときf(n) = 0.623 (40n) ^{-3.5}である。また, $F(u_*^2/u_{*c}^2)$ は図-4.1の実線で与えら れるが, その近似式として次式がある(図中の破線が (4.8)式)。

$$F\left(\frac{u_*^2}{u_{*c}^2}\right) = \frac{1}{1 + 8\left(u_{*c}^2/u_*^2\right)^4}$$
(4.8)

(2) Meyer-Peter • Müller の式³⁾

$$q_B = 8(\tau'_* - \tau_{*c})^{1.5} \sqrt{sgd^3}$$
(4.9)

ここで、 τ'_* は無次元有効掃流力といわれ、次式で書き 表わされる。

$$\tau'_* = \frac{{u'_*}^2}{sgd}$$

ただし, $u'_* = (n_b/n)^{3/4} u_*$: 有効摩擦速度,

 $n_b = 0.0192 d_{90}^{1/6} (d_{90} : cm 単位) : 砂粒抵抗を$ 表わす Stlickler の型の粗度係数,

n:流れ全体の Manning の粗度係数

有効掃流力の概念は、次のように考えるとよい。

すなわち,今,河床に河床波がある場合に,それは流 れの抵抗に対して形状抵抗として寄与するものと考え, 形状抵抗として分離した残り砂面上の表面抵抗分を有 効掃流力と定義する。

したがって、河床波がない場合には $\tau'_* = \tau_*$ であり、 (4.9)式は次式で書き表わされる。

$$q_{B} = 8(\tau_{*} - \tau_{*c})^{1.5} \sqrt{sgd^{3}}$$
(4.10)

(演習問題 8)

粒径 d=1mm の砂の沈降速度 $w_f \varepsilon x \delta$, 摩擦速度 $u_* = 20$ cm/s のとき浮遊・掃流形式のいずれとなるか判定 せよ。

〔演習問題8の解答〕

1. 考 え 方

粒径 d の砂粒の沈降速度 w_f を求めるには、Rubey の 実験式(4.6)式がよく用いられるので、これを使用する。

また、与えられた水理条件に対して粒径 *d* の砂粒の移 動形式が掃流と浮遊のいずれとなるかは、摩擦速度 *u** と沈降速度 *w*_f との比を用いて(4.3)~(4.5)式に示し たような関係で判定することができる。

2. 実際の計算

粒径 d=1mm の砂の沈降速度 w_f は, Rubey の実験式 (4.6) 式を用いると,

$$w_{f} = \left(\sqrt{\frac{2}{3} + \frac{36v^{2}}{sgd^{-3}} - \sqrt{\frac{36v^{2}}{sgd^{-3}}}}\right)\sqrt{sgd}$$
$$= \left\{\sqrt{\frac{2}{3}} + \frac{1}{1.65 \times 980 \times 0.1^{3}} - \sqrt{\frac{36 \times 0.01^{2}}{1.65 \times 980 \times 0.1^{3}}}\right\} \times \sqrt{1.65 \times 980 \times 0.1}$$
$$= 9.8 \text{ cm/s}$$

したがって、 $u_*=20$ cm/s のとき u_*/w_f は、 $\frac{u_*}{w_f} = \frac{20}{9.8} = 2.04$

となり、(4.5)式の条件にあてはまるので、砂粒は浮遊 形式で移動する。

(演習問題9)

河幅 B=200m,河床勾配 $i_b=1/1000$, Manning の粗度 係数 n=0.02 なる広矩形断面水路に流量 $Q=500m^3/s$ が等流状態で流れているとき、粒径 d=1mm の砂は浮 遊・掃流形式のいずれとなるか判定せよ。

〔演習問題9の解答〕

1. 考 え 方

与えられた水理条件に対して、粒径 d の砂粒の移動形 式が掃流と浮遊のいずれとなるかは、〔演習問題 8 の解 答〕と同様の考え方判定することができる。ただし、題 意より流れは等流状態であるのでエネルギー勾配を i_e 、 河床勾配を i_b として $i_b=i_e$ であり、また広矩形断面水路 であるので等流水深を h_0 として径深 $R=h_0$ とおいて (3.3)式より摩擦速度 u*を求める。

2. 実際の計算

(2.20) 式より等流水深 h₀ は次のように与えられる。

$$h_{o} = \left(\frac{nQ}{B\sqrt{i_{b}}}\right)^{3/5} = \left(\frac{0.02 \times 500}{200 \times \sqrt{\frac{1}{1000}}}\right)^{3/5} = 1.316\text{m}$$

摩擦速度 u_* は(3.3)式より $R \Rightarrow h_0$, $i_b = i_e$ として,

$$u_* = \sqrt{gh_o}i_b = \sqrt{980 \times 131.6 \times \frac{1}{1000}} = 11.4 \text{ cm/s}$$

また, 沈降速度 wf は Rubey の実験式(4.6) 式より,

$$w_{f} = \left(\sqrt{\frac{2}{3}} + \frac{36v^{2}}{sgd^{3}} - \sqrt{\frac{36v^{2}}{sgd^{3}}}\right)\sqrt{sgd}$$
$$= \left\{\sqrt{\frac{2}{3}} + \frac{36\times0.01^{2}}{1.65\times980\times0.1^{3}}\right\}$$
$$-\sqrt{\frac{36\times0.01^{2}}{1.65\times980\times0.1^{3}}}\right\} \times \sqrt{1.65\times980\times0.1}$$
$$= 9.8 \text{ cm/s}$$

したがって, u*/wfは,

$$\frac{u_*}{w_*} = \frac{11.4}{9.8} = 1.16$$

となり、(4.4)式の条件にあてはまるので、掃流・浮遊の混在形式である。

(演習問題 10)

- 粒径 *d*=1mmの砂について、以下の設問に答えよ。 (1) 無次元掃流力 _{*t**}=0.3 のときの砂の移動形式は、浮
- 遊・掃流のいずれとなるか判定せよ。 (2) 無次元掃流力 τ_{*} をどの程度まで上げると,浮遊砂
- 2) 無次九冊加力な後をこの程度まで上りると、存近の が卓越する領域に入るか判定せよ。

〔演習問題 10 の解答〕

- 1. 考 え 方
- (1) 無次元掃流力 τ_* は(3.5)式で表わされ、粒径 d およ σ_{τ_*} が与えられたときの摩擦速度 u_* は(3.5)式から、

 $u_* = \sqrt{\tau * sgd}$

で求められるので, 沈降速度 *w*_fを Rubey の実験式(4.6) 式で求められることにより, (4.3)~(4.5)式の関係 から, 砂粒の移動形式が判定できる。

(2) 浮遊砂が卓越する条件は、 u_*/w_f が(4.5)式を満た すような場合である。すなわち、 $u_*/w_f > 1.67$ であるか ら、これに(3.5)'式を代入し、整理すると、

$$\tau_{*} > \frac{\left(1.67_{f}^{*}\right)^{2}}{sed}$$
(4.5)

で与えられる。

(1) 摩擦速度 u*は(3.5) '式より,

 $u_* = \sqrt{\tau * sgd} = \sqrt{0.3 \times 1.65 \times 980 \times 0.1} = 7.0 \text{cm/s}$ 沈降速度 w_f は(4.6)式より,

$$w_{f} = \left(\sqrt{\frac{2}{3} + \frac{36v^{2}}{sgd^{3}}} - \sqrt{\frac{36v^{2}}{sgd^{3}}}\right)\sqrt{sgd}$$
$$= \left\{\sqrt{\frac{2}{3}} + \frac{36 \times 0.01^{2}}{1.65 \times 980 \times 0.1^{3}}\right\}$$

$$-\sqrt{\frac{36 \times 0.01^2}{1.65 \times 980 \times 0.1^3}} \right\} \times \sqrt{1.65 \times 980 \times 0.1}$$

=9.8cm/s

したがって, u*/wfを計算すると,

$$\frac{u_*}{w_f} = \frac{7.0}{9.8} = 0.71$$

となり, (4.3)式の条件にあてはまるので掃流形式である。

(2) 浮遊砂が卓越する条件は、(4.5) '式を満たすような 場合である。すなわち、

$$\tau_* > \frac{(1.67w_f)^2}{sgd} = \frac{(1.67 \times 9.8)^2}{1.65 \times 980 \times 0.1} = 1.66$$

とすればよい。

以上, 解答作成者 本間 隆

(演習問題 11)

摩擦速度 $u_*=20$ cm/s, 粒径 d=5 mm, n=0.03 のとき, 土研公式(4.7)式および Meyer-Peter・Müller 式 (4.10)式により単位幅当たりの掃流砂量 q_B を求めよ。

〔演習問題 11 の解答〕

1. 考 え 方

土研公式(4.7)式および Meyer – Peter・Müller 式 (4.10)式を用いて、単位幅当たりの掃流砂量 q_B を求め るには、摩擦速度 u_* が与えられているので限界摩擦速 度 u_{*c} を求める必要がある。 u_{*c} の計算は岩垣の式(3.7) 式を用いる。

1. 実際の計算

①土研公式(4.7)式では u_{*c}^2 を求める必要がある。今, 粒径 d=5mm=0.5cm>0.303cm であるので,岩垣の式 (3.7)式より,

 $u_{*c}^2 = 80.9d = 80.9 \times 0.5 = 40.45 \text{ cm}^2/\text{s}^2$

求める q_B は、 $F(u_*^2/u_{*c}^2)$ として近似式(4.8)式を用いるとともに、Manningの粗度係数 $n=0.03 \ge 0.025$ のとき f(n)=0.623 であるから、次のように計算される。

$$q_{B} = \frac{u_{*}^{3}}{sg} F\left(\frac{u_{*}^{2}}{u_{*c}^{2}}\right) f(n)$$

$$= \frac{u_{*}^{3}}{sg} \left\{\frac{1}{1 + 8\left(u_{*c}^{2}/u_{*}^{2}\right)^{4}}\right\} 0.623$$

 $= \frac{0.2^3}{1.65 \times 9.8} \times \frac{1}{1 + 8 \times (40.45/20^2)} \times 0.623$

= 3.08 \times 10⁻⁴m²/s

②Meyer-Peter・Muller 式 (4.10) 式では, τ_* およ び τ_{*c} を求める必要がある。 $u_*^2 = 400 \text{cm}^2/\text{s}^2$, $u_{*c}^2 = 40.45 \text{ cm}^2/\text{s}^2$ であるから,

$$\tau_* = \frac{u_*^2}{sgd} = \frac{400}{1.65 \times 980 \times 0.5} = 0.495$$

$$\tau_{*c} = \frac{u_{*c}^2}{sgd} = \frac{40.45}{1.65 \times 980 \times 0.5} = 0.050$$

ゆえに、求める qB は次のように計算される。

$$q_{B} = 8(\tau_{*} - \tau_{*c})^{1.5} \sqrt{sgd^{3}}$$

= 8 (0.495 - 0.050)^{1.5} \times \sqrt{1.65 \times 9.8 \times 0.005^{3}}
= 3.38 \times 10^{-3} \text{m}^{2}/s

①と②の結果を比較すると、両者でオーダーが異なっ ていることがわかる。これは流砂量式の精度にかかわる 問題であり、実際問題にこれらの流砂量式を適用する際 には、使用する流砂量式の妥当性を実測により検証する ことが不可欠であることを意味している。

(演習問題 12)

河幅 B=300m,河床勾配 i_b =1/500, Manning の粗度 係数 n=0.02 なる広矩形断面水路において,流量 Q= 1000m³/s が等流状態で流れている場合について,以下の 設問に答えよ。

(1) 粒径 *d*=3mm の砂の単位幅当たりの掃流砂量 *q*_B

を, Meyer-Peter・Müller 式(4.10) 式により求めよ。

(2) 断面内の全掃流砂量 Q_Bを求めよ。

〔演習問題 12 の解答〕

1. 考 え 方

(1) 流量 $Q=1000m^3$ /s,河幅 B=300m, Manning の粗 度係数 n=0.02,河床勾配 $i_b=1/500$ が与えられているの で,まず(2.20) 式により等流水深 h_0 を求める。次に, Meyer-Peter・Müller 式(4.10) 式により単位幅当たり の掃流砂量 $q_B(m^2/s)$ を求めるには,砂粒の粒径 d=3mm に対して無次元掃流力 τ_* および無次元限界掃流力 τ_{*c} をおのおの(3.5) 式および(3.6) 式により計算する 必要がある。

(2) 全掃流砂量 $Q_B(m^3/s)$ は、(1)で求めた $q_B(m^2/s)$ に 河幅 B(m)を乗じることにより求まる。

- 1. 実際の計算
- (1) (2.20) 式により等流水深 h₀ を求める。

$$h_o = \left(\frac{nQ}{B\sqrt{i_b}}\right)^{3/5} = \left(\frac{0.02 \times 1000}{300 \times \sqrt{\frac{1}{500}}}\right) = 1.271 \text{ m}$$

次に,題意より広矩形断面水路であるので,径深 $R \Rightarrow h_0$, 流れは等流状態であるのでエネルギー勾配 $i_e = i_b$ とし て, (3.3)式より摩擦速度 u_* を求める。

$$u_* = \sqrt{ghi_b} = \sqrt{980 \times 127.1 \times \frac{1}{500}} = 15.783 \text{ cm/s}$$

岩垣の式(3.7)式により限界摩擦速度 u*c を求める。

粒径 d=0.3m であるので, (3.7)式から $0.118 \leq d \leq 0.303$ cm のときの u_{*c}^2 は次のように計算される。

 $u_{*c}^2 = 134.6d^{31/32} = 134.6 \times (0.3)^{31/32} = 24.675 \text{ cm}^2/\text{s}^2$ ゆえに、

 $u_{*c} = 4.967 \text{ cm/s}$

 u_* および u_{*c} が求まったので、無次元掃流力 τ_* および無次元限界掃流力 τ_{*c} をおのおの(3.5)式および(3.6)式で求めることができる。ただし、s=1.65、g=980 cm/s²とする。

$$\tau_* = \frac{u_*^2}{sgd} = \frac{15.783^2}{1.65 \times 980 \times 0.3} = 0.514$$
$$\tau_{*c} = \frac{u_{*c}^2}{sgd} = \frac{4.967^2}{1.65 \times 980 \times 0.3} = 0.051$$

したがって、Meyer-Peter・Müller 式(4.10)式により、単位幅当たりの掃流砂量 q_B は次のように計算される。

$$q_{B} = 8(\tau_{*} - \tau_{*c})^{1.5} \sqrt{sgd^{3}}$$

= 8(0.514 - 0.051)^{1.5} \sim \sqrt{1.65 \times 9.8 \times 0.003^{3}}
= 1.66 \times 10^{-3} m^{2}/s

(2) 全掃流砂量 $Q_B(m^3/s)$ は、単位幅当たり掃流砂量 $q_B(m^2/s)$ に河幅 B(m)を乗じて求めることができる。

 $Q_B = q_B \cdot B = 1.66 \times 10^{-3} \times 300 = 0.498 \text{ m}^3/\text{s}$ 以上, 解答作者 村上泰啓

(演習問題 13)

前出の(演習問題 3) で求めた流れにおいて,河床砂 の粒径を *d*=1cm としたとき,各断面について以下の設 問に答えよ。

- (1) 河床砂が移動するかどうか判定せよ。
- (2) 河床砂の移動形式を判定せよ。
- Meyer-Peter・Müller 式(4.10)式により q_Bを求めよ。

(4) 全掃流砂量 Q_B を求めよ。

〔演習問題 13 の解答〕

1. 考 え 方

(1) 河床砂が移動するか否かの判定は、摩擦速度 *u**と
 限界摩擦速度 *u**c の大小関係を考えればよい。

摩擦速度 *u**は, (3.3)式で与えられる。ここで, 題意 より広矩形断面水路であるので, 径深 *R*≒*h* とすると, (3.3)式は次式となる。

 $u_* = \sqrt{ghi_c}$

ただし、g:重力加速度(980cm/s²)、h:水深(cm) i_e :エネルギー勾配

上式中のエネルギー勾配 ie は、広矩形断面水路では次式

により与えられる。 n^2O^2

$$i_e = \frac{n \mathcal{Q}}{B^2 h^{10/3}}$$

ここに, *n*: Manning の粗度係数, *Q*: 流量(m³/s) *B*: 河幅(m), *h*: 水深(m)

限界摩擦務速度 *u***c* は、河床砂の粒径 *d*(cm) が与えら れれば岩垣の式(3.7)式で求められる。

河床砂が移動するか否かの判定は、次のように行う。 すなわち、 $u_* > u_{*c}$ ときは河床砂は移動し、 $u_* < u_{*c}$ の ときは移動しない。

(2) 砂の移動形式は,摩擦速度 *u**と沈降速度 *w*fの比を
 用いて(4.3)式~(4.5)式により判定できる。すなわち,

*u**/*w*f<1.08······掃流形式

1.08<*u**/*w_f*<1.67・・・・・・掃流・浮遊混在形式 1.67<*u**/*w_f*・・・・・・・・・・・・浮遊形式

ここで, 沈降速度 w_f は Rubey の実験式(4.6)式により 求める。

$$w_f = \left(\sqrt{\frac{2}{3} + \frac{36_v^2}{sgd^3}} - \sqrt{\frac{36_v^2}{sgd^3}}\right)\sqrt{sgd^3}$$

ただし、s:砂の水中比重(1.65)

d:河床砂の粒径(cm)

v:水の動粘性係数(0.01cm²/s)

g:重力加速度(980cm/s²)

(3) Meyer-Peter・Müller 式(4.10)式により,単位幅 当たりの掃流砂量 $q_B(m^2/s)$ を求めるには,無次元掃流 力 τ_* および無次元限界掃流力 τ_{*c} をおのおの(3.5)式 および(3.6)式で求める必要がある。すなわち,

 $\tau_* = \frac{u_*^2}{sgd'}, \quad \tau_{*c} = \frac{u_{*c}^2}{sgd}$

ここで, 摩擦速度 *u**はすでに(1)で求められており, 限界 摩擦速度 *u**_cは, 河床砂の粒径 *d* が与えられれば岩垣の 式(3.7)式により求まる。

(4) 全掃流砂量 $Q_B(m^3/s)$ は、(3)で求めた単位幅当たり の掃流砂量 $q_B(m^2/s)$ に河幅 B(m)を乗じて求めることができる。

2. 実際の計算

(1) 計算速度 u_* は $u_* = \sqrt{ghi_e}$ で与えられ,式中のエネ ルギー勾配 $i_e = \frac{n^2 Q^2}{B^2 h^{10/3}}$ である。ここで,Manningの粗度 係数 n=0.025,流量 $Q=1500 \text{m}^3$ /s であり,前出の〔演 習問題 3 解答〕から河幅 B(m),水深 h(m)が表-4.1 の①,②のように得られているので,これらにより i_e お よび u_* を計算した結果を表-4.1 に示す。

限界摩擦速度 u_{*c} は、岩垣の式(3.7)式により次のように求められる。粒径 d=1cm ≥ 0.303 cm のとき、 $u_{*c}^2 = 80.9d = 80.9$ cm $^2/s^2$ であるから、 $u_{*c} = \sqrt{80.9} = 8.994$

cm/sとなる。

*u**および*u***c*が求まったので,河床砂が移動するか否かの判定を行うことができる。

実際に, 第1断面(*h*=2.5m, *B*=300m)を計算して みると,

$$i_e = \frac{0.025^2 \times 1500^2}{300^2 \times 2.5^{10/3}} = 7.368 \times 10^{-4}$$

 $u_{*} = \sqrt{980 \times 250 \times 7.368 \times 10^{-4}} = 13.436 \text{ cm/s}$

ゆえに、 $u_*=13.436 \text{ cm/s} > u_{*c}=8.994 \text{ cm/s} となるので、河床砂は移動する。$

同様にして、各断面において判定を行った結果を表 -4.1の⑤に示す。

 (2) 砂の移動形式は、摩擦速度 u*と沈降速度 wfの比を用いて(4.3)式~(4.5)により判定できる。各断面の u*は(1)で求めてあるので、粒径 d=1cm に対する沈降 速度 wfを Rubey の実験式(4.6)式により求める。

$$w_{f} = \left(\sqrt{\frac{2}{3} + \frac{36v^{2}}{sgd^{3}}} - \sqrt{\frac{36v^{2}}{sgd}}\right)\sqrt{sgd}$$
$$= \left\{\sqrt{\frac{2}{3} + \frac{36 \times 0.01^{2}}{1.65 \times 980 \times 1^{3}}} - \sqrt{\frac{36 \times 0.01^{2}}{1.65 \times 980 \times 1^{3}}}\right\} \times \sqrt{1.65 \times 980 \times 1}$$

=32.773cm/s

実際に第1断面(*u**=13.436cm/s)の移動形式を判定 すると, *u**/*w*f=13.436/32.773=0.410<1.08となり、これ は(4.3)式にあてはまるので掃流 '形式である。

同様にして,各断面における *u**/*w*f の計算結果を表 -4.1 の⑥に示すとともに,移動形式の判定結果を同表の ⑦に示した。

(3) Meyer-Peter・Müller 式(4.10) 式を用いる。

$$q_{R} = 8(\tau * -\tau * c)^{1.5}\sqrt{sgd^{3}}$$

ただし, _{**τ**_{*}}:無次元掃流力, **τ**_{*c}:無次元限界掃流力 <u>s</u>:砂の水中比重(1.65),<u>d</u>:砂の粒径(cm)

g:重量加速度(980cm/s²)

上式は τ_{*} , τ_{*c} が求まれば計算できる。 τ_{*} および τ_{*c} は,おのおの(3.5)式および(3.6)式により求まる。

 τ_{*c} は(1)で u_{*c} =8.994cm/s と計算されているので、次のように与えられる。

各断面の τ_* はu*がすでに(1)で求められているので、次のように容易に計算でき、 q_B も求まる。

実際に第1断面の τ_* , q_B を求めると, 次のようになる。

$$\tau_* = \frac{13.436^2}{1.65 \times 980 \times 1} = 0.1116$$

断面 No.	① 水深 <i>h</i> (m)	② 幅 <i>B</i> (m)	(3) $i_e(\times 10^{-4})$	④ <i>u</i> _* (cm/s)	⑤ 移動	$\overset{}{\underset{w_*}{}} u_{*} w_{f}$	⑦ 移動形式	8) τ*	$(9) q_B(\text{cm}^2/\text{s})$	$\overset{(1)}{Q_B(\mathrm{m}^{3}/\mathrm{s})}$
1	2.500	300	7.368	13.436	する	0.410	掃流	0.112	4.92	0.148
2	2.381	320	7.619	13.334]]	0.407	11	0.110	4.73	0.150
3	2.362	280	10.221	15.380]]	0.469	11	0.146	9.61	0.269
4	2.653	250	8.704	15.041	//	0.459	"	0.140	8.67	0.217
5	2.086	300	13.472	16.594]]	0.506	11	0.170	13.41	0.402
6	2.187	300	11.508	15.702]]	0.479	11	0.153	10.55	0.316
7	1.980	320	14.089	16.536]]	0.505	11	0.169	13.22	0.423
8	2.598	350	4.762	11.009]]	0.336	11	0.075	1.27	0.044
9	2.214	300	11.047	15.481	//	0.472	"	0.148	9.90	0.297
10	2.262	250	14.810	18.121	//	0.553	11	0.203	19.26	0.482

表-4.1 計算結果

 $q_{R} = 8 \times (0.1116 - 0.050)^{1.5} \times \sqrt{1.65 \times 980 \times 1^{3}}$

 $=4.92 \text{ cm}^{2}/\text{s}$

同様にして、各断面における τ_* および q_B の計算結果 をおのおの表-4.1の⑧および⑨に示す。

(4) 全掃流砂量 Q_Bは、単位幅当たりの掃流砂量 q_Bに河
 幅 B を乗じて求めることができる。

 $Q_B = q_B \cdot B$

各断面の B(m)は表 -4.1 の②に,また $q_B(\text{cm}^2/\text{s})$ は(3)で求めたように表 -4.1の⑨に示されているので,上式を用いて求めることができる。

実際に,第1断面 (B = 300m, $q_B = 4.92$ cm²/s=4.92×10⁻⁴m²/s)の Q_B (m³/s)を求めると,

 $Q_B = 300 \times 4.92 \times 10^{-4} = 0.148 \text{ m}^{3/\text{s}}$

同様にして、各断面における Q_B の計算結果を表-4.1 の0に示す。

以上, 解答作者 白川俊也

(演習問題 14)

砂の場合について、その移動形式を判定するグラフを 作成せよ。ただし、グラフは両対数グラフとし、縦軸に 無次元掃流力τ_{*}、横軸に粒径*d*をとるものとする。

なお、グラフ中に無次元限界掃流力 τ_{*c} と粒径 dの関係についても記入せよ。

〔演習問題 14 の解答〕

1. 考 え 方

砂の移動形式は、摩擦速度 u_* と沈降速度 w_f の比を用 いて(4.3)式~(4.5)式により判定でき、沈降速度 w_f は 粒径 d に対して(4.6)式により求まることは前出の演習 問題で具体例をあげて詳しく解説した。 本問では,砂の移動形式を規定するために必要な境界 線の式を無次元掃流力 τ_{*}と粒径 *d*の関係式として求 め,掃流と浮遊の境界グラフを作成する。

(4.3) 式~(4.5) によると, 掃流卓領域と掃流・ 浮遊の混在領域の境界線は *u**/*w*_f=1.08 で与えられ, 掃 流・浮遊混在領域と浮遊卓越領域の境界線は *u**/*w*_f= 1.67 で与えられたことがわかる。

したがって, 無次元掃流力 *t**の算定式(3.5)式, すなわち,

$$\tau_* = \frac{u_*^2}{sgd}$$

ただし, *s*:砂の水中比重, *g*:重力加加速度, *d*:粒 径に上記の *u**~*w*fの関係式を代入すると,

$$\tau_{*1} = \frac{(1.08 \cdot w_{f})^{2}}{sgd} \cdots 掃流と掃流・浮遊混在の境界線$$
$$\tau_{*2} = \frac{(1.67 \cdot w_{f})^{2}}{sgd} \cdots 掃流・浮遊混在と浮遊の境界線$$

となり、この2式が流砂の移動形式を規定する境界線(τ_* ~dの関係)である。

次に、無次元限界掃流力 τ_{*c} と粒径 dの関係は、岩垣の式 (3.7) 式より限界掃流力 u_{*c} を求め、(3.6) 式により τ_{*c} を計算することにより求められる。

2. 実際の計算

流砂の移動形式の境界線は、次式で表わされる。

$$\tau_{*1} = \frac{\left(1.08w_{f}\right)^{2}}{sgd}$$
$$\tau_{*2} = \frac{\left(1.67w_{f}\right)^{2}}{sgd}$$

具体的に τ_{*1} , τ_{*2} を計算してみる。例えば, d=0.01 cm, s=1.65, v=0.01 cm²/s, g=980 cm/s² のときの w_f は,

表-4.2 無次元掃流力 τ*1, τ*2の計算結果

粒径 d(cm)	0.01	0.02	0.03	0.04	0.05	0.1	0.5	1	5
$ au_{*2}$	0.122	0.551	0.933	1.184	1.343	1.656	1.840	1.852	1.859
$ au_{* 1}$	0.051	0.231	0.391	0.494	0.562	0.693	0.770	0.775	0.778

図-4.2 掃流·浮遊境界判定図

=0.840 cm/s

となるから、 τ_{*1} , τ_{*2} は次のように計算される。

 $\tau_{*1} = (1.08 \times 0.840)^2 / (1.65 \times 980 \times 0.01) = 0.051$

 $\tau_{*2} = (1.67 \times 0.840)^2 / (1.65 \times 980 \times 0.01) = 0.122$

以下同様に, d = 5 cm まで変化させて求められた τ_{*1} , τ_{*2} の値を表-4.2に示し,同表の結果を図-4.2に図 示した。

次に, $\tau_{*c} \ge d$ の関係を図示する。 τ_{*c} は岩垣の式 (3.7)式により各粒径範囲ごとの u_{*c} を計算し, (3.6) 式に代入して求まる。得られた $\tau_{*c} \ge d$ の関係を図-4.2の破線で示した。したがって, ある粒径dに対して $\tau_{*} <$

au_{*c} となる領域では砂は移動しない。

以上,解答作者 及川正則

5. 河床変動の1次元解析法

通常単に河床変動といえば、河道の数 km から数 10 km にわたる大規模な河床変動をさしており、その計算

には河床を横断方向に平均化し,縦断方向のみの変化に ついて論ずる1次元解析方法が適用される。例えば、ダム 築造や河川改修によって河川の上・下流の境界条件が変 化するような場合に、河床変動を長時間、かつ広範囲に わたって予測するのにこの方法は有効である。

ー様砂礫あるいは平均粒径を用いた掃流砂による河床 変動の1次元解析法の基礎式は,次の4式である。

流れの運動方程式と連続式;

$$\frac{\partial z}{\partial x} + \frac{\partial h}{\partial x} + \frac{\partial}{\partial x} \left(\frac{aV^2}{2g} \right) + i_e = 0$$
(5.1)

$$\frac{\partial}{\partial x}(BhV) = 0 \tag{5.2}$$

流砂の連続式と流砂量式;

$$\frac{\partial z}{\partial t} + \frac{1}{(1-\lambda)B} \cdot \frac{\partial}{\partial x} (q_{\scriptscriptstyle B}B) = 0$$
(5.3)

$$q_B = f(u_*) \tag{5.4}$$

ただし, B:河幅, h:平均水深, V:平均流速

x:流下方向の座標軸

z:平均河床高, t:時間

 $u_*:$ 平均摩擦速度, $i_e:$ エネルギー勾配

 $q_B: 掃流砂量$

λ:河床砂の空隙率

α:エネルギー補正係数

上記の4式のうち、(5.1)式および(5.2)式, すなわ ち不等流の式の計算法については,第1,第2章で詳しく 述べられているので,ここでは説明を省略する。また, (5.4)式の流砂量式についてもすでに前章で代表的な例 をあげて解説した。したがって,残る流砂の連続式(5.3) 式について述べることにする。

5-1 流砂の連続式

図-5.1 のように河川流路の上・下流に任意の2 断面を 考えると、その上流側断面①の流砂量が下流側断面②よ り大きければこの区間には堆積が起き、逆に小さければ 洗堀が起こる。このように、河川流路における河床高の 変化は、各断面流砂量の不均衡によって生ずるものであ り、掃流砂による河床高 z の時間変化は、(5.3)式の流 砂の連続式により求めることができる。

流砂の連続式(5.3)式を誘導してみよう。今,図-5.1 中の断面①,②の掃流砂量をおのおの*Q*_{B1},*Q*_{B2}(容積表

図-5.1 流砂の連続条件

示, m^3 /s)とすると, Δt 秒間に①断面を通過する流砂量 は $Q_{B1} \cdot \Delta t$ (m³)であり,同様に②断面では $Q_{B2} \cdot \Delta t$ (m³) である。

したがって、この区間で河床に堆積と洗堀のいずれが 起こるかは、河床変動高を $\Delta z(m)$ として以下のように 表現できる。ただし、z軸は上向きを正する。

 $Q_{B1} \cdot \Delta t > Q_{B2} \cdot \Delta t$ のとき,堆積する ($\Delta z > 0$) $Q_{B1} \cdot \Delta t = Q_{B2} \cdot \Delta t$ のとき,堆積も洗堀もしない ($\Delta z > 0$)

 $Q_{B1} \cdot \Delta t = Q_{B2} \cdot \Delta t$ のとき,洗堀する ($\Delta z > 0$) いい換えると,

 $Q_{B1}-Q_{B2}>0$ のとき、 $\Delta z>0$

 $Q_{B1} - Q_{B2} = 0$ のとき、 $\Delta z = 0$ $Q_{B1} - Q_{B2} < 0$ のとき、 $\Delta z < 0$

ここで、河床に堆積が起こる場合について考えてみよう。この区間に堆積する量は、 $(Q_{B1}-Q_{B2}) \cdot \Delta t$ であるが、これを河床高に換算するときには、図-5.2のように空隙を考慮する必要がある。今、空隙率を λ で表わすことにすると、堆積後の容積をVxとしてVxは次式のように表わされる。

$$\frac{1-\lambda}{1} = \frac{(Q_{B1} - Q_{B2}) \cdot \triangle t}{Vx}$$

すなわち,

$$V_{X} = \frac{Q_{B1} - Q_{B2}}{1 - \lambda} \cdot \Delta t \tag{5.5}$$

一方, Vx を河床変動高 Δz で表すと, 区間距離を Δx として,

$$Vx = B \cdot \Delta x \cdot \Delta z$$
 (5.6)
であるから、(5.5)式と(5.6)式より、

$$\frac{Q_{B1}-Q_{B2}}{1-\lambda} \cdot \Delta t = B \cdot \Delta x \cdot$$

すなわち,

$$\frac{\Delta z}{\Delta t} + \frac{1}{(1-\lambda)B} \cdot \frac{Q_{B2} - Q_{B1}}{\Delta x} = 0$$
(5.7)

 Δz

(5.7)式は距離に関して後進差分で表現しており、これを微分方程式で表わすと、

$$\frac{\partial z}{\partial t} + \frac{1}{\leq (1-\lambda)B} \cdot \frac{\partial Q_B}{\partial x} = 0$$
(5.8)

または,

$$\frac{\partial z}{\partial t} + \frac{1}{(1-\lambda)B} \cdot \frac{\partial (q_{\scriptscriptstyle B} \cdot B)}{\partial x} = 0$$

となり、上式は(5.3)式に等しい。

図-5.2 河床の堆積量(容積表示)の模式的表現

なお、上式中の λ は、砂の場合には0.4前後の値である。

5-2 河床変動の数値計算法

河床変動の数値計算法としては、最近は基礎式を直接 差分化して逐次計算を行う、いわゆる差分法が一般的で あり、一様砂礫河床で掃流砂を対象とした場合の計算手 順は、図-5.3のフローに示されるとおりである。

①現河床形について、与えられた流量無条件の本に不

等流計算を行い、掃流力の縦断分布を求める。

②掃流砂量式を用いて流砂量の縦断分布を求める。

③流砂の連続式により河床変動量を求める。

以上のプロセスを繰返し行うことにより,河床高の時 間変化を予測することができる。

ここで,実際に(5.3)式を差分化して河床変動高を計 算する場合の要点について述べる。

差分式による解法では、収束性、安定性、精度などが 考慮されなければならない。特に安定性が満足されない と、解は発散して計算不能となる。

差分法により安定な数値解を得るためには,以下に述 べるように差分スキームの与え方,差分幅 *Δt*, *Δx* のとり 方および境界条件の設定に注意を要する。

有限な伝播速度を有する現象では、実際の擾乱の伝播 方向、すなわち特性曲線の方向と差分スキームによって 規定される計算上の変動の伝播方向を一致させる必要が ある。河床高の変動について考えると、河床の微小擾乱 の伝播方向は、常流 ($F_r < 1$)の場合には流下方向に対し て正、射流 ($F_r > 1$)の場合には負となる。ここで、フルー ド数 $F_r = V \sqrt{gh}$ である。

したがって,<u>差分スキームのとり方は</u>,常流の場合は 時間に関して前進差分,距離に関して後進差分であり, 射流の場合は時間,距離に関していずれも前進差分とし なければならない。

以上のことを念頭に入れて,実際に河床変動計算を行う場合の(5.3)式の差分式は,流れの条件により次の2 式を用いることになる。

図-5.3 河床変動計算のフロー

①常流 $(F_r < 1)$ の場合 $\frac{z(x, t + \Delta t) - z(x, t)}{\Delta x} = \frac{1}{(1 - \lambda)B(x)} \cdot \left\{ \frac{q_s(x - \Delta x, t) B(x - \Delta x) - q_s(x, t) B(x)}{\Delta x} \right\} (5.9)$ ②射流 $(F_r > 1)$ の場合 $\frac{z(x, t + \Delta t) - z(x, t)}{\Delta t} = \frac{1}{(1 - \lambda)B(x)} \cdot \left\{ \frac{q_s(x, t) B(x) - q_s(x + \Delta x, t) B(x + \Delta x)}{\Delta x} \right\}$ (5.10)

図-5.4 に流れが常流の場合, すなわち距離に関して後 進差分の場合の河床変動計算の差分のスキームを示す。

次に, 差分幅 Δt , Δx のとり方について述べる。一般に, 収束性,安定性,精度の性質は,偏微分方程式では時間 の刻み幅 Δt と距離の刻み幅 Δx との比 $\Delta t / \Delta x$ によって 決まることが多く,とくに有限な伝播速度を有する現象 では,Courant-Friedrichs-Lewy(C. F. L.)の条件で決 定される。したがって,差分幅 Δt , Δx は次の条件を満足 するように想定しなければならない。

$$\frac{\Delta t}{\Delta x} < \left(\frac{dx}{dt}\right)_{z}^{2}$$

$$\left(\frac{dx}{dt}\right)_{z}$$

ここで、 $\left(\frac{dt}{dt}\right)_{t}$ は河床変動の伝播速度であり、(5.12) 式で求められる。

$$\left(\frac{dx}{dt}\right)_{z} = -\frac{1}{(1-\lambda)(1-F_{r}^{2})} \cdot \frac{\partial q_{B}}{\partial h}$$
(5.12)

実際に計算する場合には、使用する流砂量式を(5.12) 式に代入し、 $\partial q_{s} / \partial h \delta r$ 求めることができれば、これによ り伝播速度が求まり、(5.11)式より差分幅 Δt 、 Δx が決 定される。

境界条件の与え方は、河床変動計算の差分スキームに

図-5.4 河床変動計算の差分スキーム(後進差分)

より異なる。例えば、流れが常流の場合の河床変動計算 の差分スキームは、図-5.4 に示したとおりであり、使用 する差分式は(5.9)式である。(5.9)式により *Δz*を求 めるには上流端を境界条件としなければならない。上流 端境界条件の与え方には、次のような場合がある。

- (i) 上流端の河床を固定点とする。すなわち,(5.7)式の(Q_{B1}-Q_{B2})/Δx=0とする。この条件は,実際河川ではQ_{B1}=Q_{B2},すなわち河床は動的に安定である場合に相当する。
- (ii) 上流端の流砂量 Q_{B1}=0 と考える。この条件は, 実際河川では, 上流端にダムが築造されて土砂の補給がない場合などに相当する。
- (iii) 上流端の流砂量 Q_{B1} をなんらかの方法で与える。
 例えば、実測値をもとに流量 Q と流砂量 Q_Bの関係
 式を求めて与える。

一般の河川では、砂防施設を必要とするような上流域 や床止工のような局所的に射流となる部分を除いて、ほ とんどの場合流れは常流と考えられるので、ここで示し た計算法により、一次元的な河床変動について予測が可 能である。

(演習問題 15)

全長 L=3000m, 河床勾配 i_b =1/1000, 河幅 B=100m, 河床砂の粒径 d=5mm, Manning の粗度係数 n=0.02 の広矩形断面水路に, 図-5.5 のように高さ 50cm のマウ ンド(同一の河床砂,同一粗度)がある場合について, 以下の設問に答えよ。ただし,下流端の河床高 z=0m(標 高)とする。

- 流量 *Q*=1000m³/s が流下するとき、マウンド部分 以外の地点の等流水深 *h*₀を求めよ。
- (2) 下流端水深が等流水深 h₀の場合の水面形を区間距
 離 Δx=100m として各断面ごと不等流計算により求めよ。
- (3) 各断面における無次元掃流力 τ_{*}, 掃流砂量 q_b を求めよ。ただし, q_b は Meyer-Peter・Müller 式(4.10) 式で求めるものとする。

- (4) 各断面の 10 秒後の河床変動量 *Δz* を後進差分で求めよ。ただし、境界条件として上流端の *Δz*=0 を与えよ。
- (5) 計算時間間隔 △ t=10 秒として, 24 時間分の河床変動 計算を後進差分で行い, 1, 4, 12, 24 時間後の河床形 状を縦断面図にせよ。

〔演習問題 15 の解答〕

1. 考 え 方

(1) 広矩形断面水路における等流水深 *h*₀(*m*)は,前出の (2.20)式によって求める。

$$h_{o} = \left(\frac{Qn}{B\sqrt{i_{b}}}\right)^{3/5}$$

ここに, *Q*:流量, *n*: Manning の粗度係数, *B*:河 幅, *i_b*:河床勾配

(2) 不等流計算による水面形の計算は〔演習問題の解

答〕で詳しく解説した1階のニュートン法を用いて解い たので、(演習問題3)を参照されたい。

(3) 各断面の無次元掃流力_{て*}は, (3.5)式により計算する。

$$\tau_* = \frac{Ri_e}{sd}$$

ただし、広矩形断面水路なので径深 $R \doteq h$, エネル ギー勾配 $i_b = n^2 Q^2 / B^2 h^{10/3}$, h:水深

単位幅掃流砂量 q_b を求める式は多数あるが、本問では (4.10)式の Meyer-Peter・Müller 式を用いる。

$$Q_B = 8 (\tau_* - \tau_{*c})^{1.5} \sqrt{sgd^3}$$

ここに、 $\tau_{*c} = u_{*c}^2 / sgd$:無次元限界掃流力、 u_{*c} :限界 摩擦速度で、岩垣の式から求める、s:砂の水中比重、g: 重力加速度、d:粒径

(4) 次に河床変動量の計算は、流砂の連続式(5.3)式の差分式を用いる。

流砂の連続式(5.3)式は,

$$\frac{\partial z}{\partial t} + \frac{1}{(1-\lambda)B} \frac{\partial}{\partial x} (q_{B}B) = 0$$

であり、これを差分化(後進差分)すると、

$$\Delta z_{j} = -\frac{1}{1-\lambda} \cdot \frac{\langle (q_{B}B)_{j} - (q_{B}B)_{j+1} \rangle}{\Delta x B_{j}} \Delta t$$

ここに、断面番号jは下流端1として上流側へ向かっ てj=1, 2, 3・・・・・、 N_j とする。 λ は空隙率である。

なお、後進差分では上流端 N_j 地点で境界条件を与えなければならない。本間では、上流端の河床高を固定として計算する。すなわち常に $\Delta z_{Ni}=0$ とする。

計算手順は、まず初期河床における水面形を不等流計 算によって求める。水面形が求まると i_e が決定され、摩 擦速度u*が求まる。次に、u*と河床材料の条件(粒径、 比重)から無次元掃流力 τ_* が求まる。 τ_* が決定される と,流砂量式を用いて q_B が求まり,流砂の連続式から各 断面の変動量 Δz_i を計算することができる。

(5) 以後,新しい河床形での水面形を求めて上記の計算 手順を繰返せばよい。補遺の図-5.7に上記の河床変動計 算フローチャートを示す。

実際の計算

(1) マウンドのない部分の等流水深 h_0 を求める。与えられた条件,すなわち河床勾配 $i_b=1/1000$, Manningの粗度係数n=0.02,河幅B=100m,流量Q=1000m³/s を(2.20)式に代入すると,

$$h_{o} = \left(\frac{Qn}{B\sqrt{i_{o}}}\right)^{3/2} = \left(\frac{1000 \times 0.02}{100 \times \sqrt{1/1000}}\right)^{3/2} = 3.02 \text{m}$$

である。

(2) 下流端が等流水深 h₀の場合の水面形を求める。

打切り誤差を $\varepsilon = 0.001m$ として,1階のニュートン法を用いて計算した。この解法については、すでに(演習問題 3)で詳しく解説されているので、本問では説明を省略する。水位計算の結果を表-5.1に示す。

(3) 各断面における $\tau_* \ge q_B$ を計算する。

τ_{*}は(3.5)式により計算する。すなわち,

 $\tau_* = u_{*c}^2 / sgd = hi_e / sd$

(2) で不等流計算より求めた水面形から水深 h が求ま るので, 次式によりエネルギー勾配 ie が計算できる。

 $i_b = n^2 Q^2 / B^2 h^{10/3}$

今下流端の断面を例としてτ*を計算してみる。

水位 H=3.02m, 河床高 z=0.0m。したがって, 水深 H=3.02m であるから,

 $i_b = (0.02^2 \times 1000^2) / (100^2 \times 3.02^{10/3})$

$$=1.0047 \times 10^{-3}$$

$$\tau_* = (3.02^2 \times 1.0047 \times 10^{-3}) / (1.65 \times 0.005)$$

$$=0.3678$$

 q_B は(4.10)式により計算する。

$$q_{B} = 8(\tau_{*} - \tau_{*c})^{1.5}\sqrt{sgd^{3}}$$

 u_{*c}^2 は岩垣の式(3.7)式で計算する。砂粒の粒径 d=5mm であるから,

 $u_{*c}^2 = 80.9d = 80.9 \times 0.5$

 $=40.45 \text{cm}^{2}/\text{s}^{2}$

ゆえに、
$$au_{*c}$$
は次のように計算される。

 $\tau_{*c} = u_{*c}^2 / sgd = 40.45 / (1.65 \times 980 \times 0.5)$

$$=0.050$$

したがって,下流端での q_B は,

 $q_{\rm B} = 8 \times (0.3678 - 0.05)^{1.5} \times \sqrt{1.65 \times 9.8 \times 0.005^3}$

 $=2.037\times10^{-2}$ m/s²

同様に、各断面の τ_* および q_B の計算結果を表-5.1 に示す。

(4) 10 秒後の河床変動量 *△z* を求める。

計算は補遺の図-5.7 河床変動計算のフローチャートに 示した手順でプログラム作成し,実施した。

例として,距離 KP1500m 地点の 10 秒後の変動量 Δz を計算してみる。なお,本問では $\lambda = 0.4$ とした。

$$\begin{aligned} \Delta z_{16} &= -\frac{1}{1-\lambda} \cdot \frac{\{(q_{B}B)_{16} - (q_{B}B)_{17}\}}{\bigtriangleup x \cdot B_{16}} \bigtriangleup t \\ &= \frac{1}{1-0.4} \\ &\times \frac{(0.4256 \times 10^{-2} \times 100) - (0.2599 \times 10^{-2} \times 100)}{100 \times 100} \times 10 \end{aligned}$$

=-0.000276m

= -0.276mm

以下,各断面について同様の計算を行い,得られた河 床変動量 Δz_j を表-5.1 に示す。

 (5) *Δt*=10秒とした場合の1, 4, 12, 24時間後の河床形 を求める。

計算は(4)で示したと同様の手順で行い, *Δt*=10 秒とし て所要時間 24 時間となるまで(すなわち, 8640 回)繰返 し, 1, 4, 12, 24 時間後の河床高*z*を出力した。

計算結果を図-5.6に示す。

本問では紙面の都合で省略したが、本問以外に種々の 検討も行っているので、それらの結果より1次元の河床 変動計算を行うにあたっての注意点を列挙する。

興味ある読者は実際に検討を行ってみることをお勧 めする。

①河床変動量 Δz の計算を,流れが射流のときの差分 式(5.10)式で行った場合,すなわち,時間,距離に関 していずれも前進差分とした場合には,解は途中で発散 し,計算不能となる。つまり,差分の方向は(5.12)式 の特性曲線の向きと一致させなければならず,したがっ て,流れが常流の場合には(5.9)式のように距離に関し て後進差分としなければならないことがわかる。

②差分幅 Δt をあまり大きくとると、解が求められな くなる。これは、 $\Delta t / \Delta x$ が(5.12)式の特性曲線の傾き から決定されるために $\Delta t / \Delta x$ がこの傾きを越えるよう な Δt を与えたためと考えられる。

また, $\Delta t=1$ 秒とした計算も行ったが, $\Delta t=10$ 秒とし た計算とほぼ同一の結果となり, 精度的にはいずれの場 合も問題はない。したがって, Δt はあらかじめ(5.11) 式より上限値を求めて決定するのが計算時間の面から有 利である。

No.	距離(m)	川幅(m)	河床高(m)	$\Delta z(mm)$	水深(m)	水位(m)	i _e	<i>u</i> _* (m/s)	$ au_*$	$q_B~({ m m}^2/{ m s})$
1	0	100.0	0.00	0.00	3.02	3.02	0.1005E-02	$0.1724E \pm 00$	0.3678 E+00	0.2037 E - 02
2	100	100.0	0.10	0.00	3.02	3.12	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
3	200	100.0	0.20	0.00	3.02	3.22	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
4	300	100.0	0.30	0.00	3.02	3.32	0.1005E - 02	$0.1724E \pm 00$	0.3678 E+00	0.2037 E - 02
5	400	100.0	0.40	0.00	3.02	3.42	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
6	500	100.0	0.50	0.00	3.02	3.52	0.1005E - 02	$0.1724E \pm 00$	0.3678 E+00	0.2037 E - 02
7	600	100.0	0.60	0.00	3.02	3.62	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
8	700	100.0	0.70	0.00	3.02	3.72	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
9	800	100.0	0.80	0.00	3.02	3.82	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
10	900	100.0	0.90	0.00	3.02	3.92	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
11	1000	100.0	1.00	0.08	3.02	4.02	0.1005E - 02	0.1724E + 00	0.3678 E+00	0.2037 E - 02
12	1100	100.0	1.10	0.09	2.87	4.07	0.1191 E-02	0.1830 E+00	0.4143 E+00	0.2501 E-02
13	1200	100.0	1.20	0.08	2.74	4.14	0.1393 E-02	0.1934 E+00	0.4624 E+00	0.3012 E-02
14	1300	100.0	1.30	0.07	2.63	4.23	0.1592 E-02	0.2026 E + 00	0.5077 E+00	0.3522 E-02
15	1400	100.0	1.40	0.05	2.55	4.35	0.1761 E-02	0.2099 E+00	0.5448 E+00	0.3958 E-02
16	1500	100.0	1.50	-0.28	2.50	4.50	0.1875 E-02	0.2145 E+00	0.5693 E+00	0.4256 E - 02
17	1600	100.0	1.60	-0.10	2.84	4.84	0.1230 E - 02	0.1851 E+00	0.4238 E+00	0.2599 E-02
18	1700	100.0	1.70	-0.06	3.03	5.03	0.9950 E-03	0.1719 E+00	0.3653 E+00	0.2014 E - 02
19	1800	100.0	1.80	-0.04	3.17	5.17	0.8551 E-03	0.1630 E+00	0.3285 E+00	0.1672 E - 02
20	1900	100.0	1.90	-0.03	3.29	5.29	0.7587 E-03	0.1563 E+00	0.3021 E+00	0.1440 E - 02
21	2000	100.0	2.00	0.01	3.39	5.39	0.6867 E - 03	0.1509 E+00	0.2818 E+00	0.1269 E-02
22	2100	100.0	2.10	0.01	3.34	5.44	0.7149 E-03	0.1531 E+00	0.2898 E+00	0.1336 E-02
23	2200	100.0	2.20	0.01	3.31	5.51	0.7422 E-03	0.1551 E+00	0.2975 E+00	0.1401 E-02
24	2300	100.0	2.30	0.01	3.27	5.57	0.7683 E-03	0.1570 E+00	0.3048 E+00	0.1463 E-02
25	2400	100.0	2.40	0.01	3.24	5.64	0.7931 E-03	0.1587 E+00	0.3117 E+00	0.1522 E - 02
26	2500	100.0	2.50	0.01	3.21	5.71	0.8163 E-03	0.1603 E+00	0.3180 E+00	0.1578 E-02
27	2600	100.0	2.60	0.01	3.19	5.79	0.8378 E-03	0.1618 E+00	0.3239 E+00	0.1630 E-02
28	2700	100.0	2.70	0.01	3.17	5.87	0.8576 E-03	0.1631 E+00	0.3292 E+00	0.1678 E-02
29	2800	100.0	2.80	0.01	3.15	5.95	0.8756 E-03	0.1643 E+00	0.3340 E+00	0.1722 E-02
30	2900	100.0	2.90	0.01	3.13	6.03	0.8918 E-03	0.1654 E+00	0.3383 E+00	0.1761 E-02
31	3000	100.0	3.00	0.00	3.11	6.11	0.9063 E-03	0.1663 E+00	0.3422 E+00	0.1796 E-02

表-5.1 水面形と各断面の τ_* , q_B および 10 秒後の Δz

③本法で河床変動計算を行う場合,不等流計算の繰返 し回数が多いため,長期間の計算を行う際には,計算条 件や使用する数値計算法によっては相当の計算量となる ことが予想される。したがって,不等流計算法としては, 計算条件などにより使用できる手法が限定される場合も あるが,できるだけ少ない計算回数で解が収束するよう な手法を選定すべきである。

これまでに取りあげた手法としては,ニュートン法 と緩和係数法があるが,そのほかにもいくつかあるので 比較してみるとよい。

以上, 解答作成者 若松信冶

参考文献

- 1)椿東一郎:水理学Ⅱ(第14章),基礎土木工学全書7(森 北出版)1974
- 2) 佐藤清一・吉川秀夫・芦田和男;河床砂礫の掃流運搬に 関する研究(1),建設省土木研究所報告,第98号,昭和32 年
- 3) Meyer—Peter, E. &R. Müller : Formulas for bed load transport, Proc. 2nd Congress of IAHR, Stockholm, 1948

補遺 計算プログラム概要

〔6〕演習問題15

〔演習問題 15 解答〕で使用した一次元の河床変動計算 プログラムを以下に示す。

本プログラムは、一様砂礫河床における掃流砂を計算 対象としており、流れが常流(フルード数 $F_r < 1$)の場合 に適用できる。

(1) 河床変動計算のフローチャート

図-5.7 河床変動計算のフローチャート

(2) プログラムの変数説明

変 数 名	説明
G	重力加速度 g
S	砂粒子の水中比重 s
D	砂粒子の粒径 d (m)
RAMDA	空隙率 λ
Q	流量 q (m/s)
SIN	Manning 仍相及示数 n 水 敗長
DX	区間距離 Δx (m)
EPS	打切り誤差を
DT	計算時間隔 Δt (s)
ЕТІМ	計算打切り時間 (s)
N J	
TIM (I)	結末四万時間 (hf), 1=1~6 現在の時間 (e)
ITM	PTIM のポインター
K P (J)	下流端からの距離(m)
B(J)	川幅 B (m)
Z(J)	河床高 z (m)
H(J)	水深 h (m)
H ₀ IF	下流端水位 h_0 (m) エネルギー 勾配 i
IE US(I)	エイルイームに l_e 摩擦速度 μ (m/s)
QB(J)	単位幅掃流砂量 q_B (m ² /s)
TS(J)	無次元掃流力 τ_*
DZ(J)	河床変動量 Δz (m)
WF	砂粒の沈降速度 w_f (m/s)
	上 流 端 からの 断 面 番 号 (J=1~NJ)
(3) プログラ	コムの解説
①メイン・プログ	*ラム
行 番 号	解説
11~24	宣言文
27~50	定数の設定
54~64	断面データ (<i>KP</i> , <i>B</i> , <i>z</i>) の設定
68	沈隆速度 wcの計算 ((2) サブルーチン CAIWF)
74	記憶始了の如今
$74 \\ 78 \sim 79$	計算終了の判定 不等流計算((3)サブルーチンCALH)
74 78~79 83~85	1 計算終了の判定 不等流計算(③サブルーチン CALH) <i>u</i> の計算
74 $78 \sim 79$ $83 \sim 85$ 89	には本語を引かれます(の) アンルーチン CALH) 計算終了の判定 不等流計算(③サブルーチン CALH) u_{*} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB)
74 $78 \sim 79$ $83 \sim 85$ 89 $93 \sim 84$	には本語を 計算終了の判定 不等流計算(③サブルーチン CALH) u_{\bullet} の計算 τ_{\bullet} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT)
$ \begin{array}{c} 74 \\ 78 \sim 79 \\ 83 \sim 85 \\ 89 \\ 93 \sim 84 \\ 98 \\ 100 \end{array} $	には本語及 所の相手 (⑥ ナブル ナン CALM) 計算終了の判定 不等流計算 (③ サブルーチン CALH) u_{a} の計算 τ_{*} および q_{B} の計算 (⑥ サブルーチン CALQB) 計算結果の出力 (④ サブルーチン POUT) Δz の計算 (⑤ サブルーチン CALDZ)
$ \begin{array}{r} & & & & & & & \\ & & & & & & & \\ & & & &$	には本語を 計算終了の判定 不等流計算(③サブルーチン CALH) u_{e} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 AUWE
74 78~79 83~85 89 93~84 98 100 ②サブルーチン C 粒径 d から沈	にはような、 計算終了の判定 不等流計算(③サブルーチン CALH) u_{*} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 CALWF :降速度 w_{f} の計算する
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から決 行 番 号	にはない。 計算終了の判定 不等流計算(③サブルーチン CALH) u_{*} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算する 解 説
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から法 行番号 124	にはようないの日本(の) アンル フラン (ALM) 計算終了の判定 不等流計算(③サブルーチン CALH) u_{*} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF :降速度 w_{f} の計算する 解 説 w_{f} の計算
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から液 行番号 124 125	にはないの日本(の) アンバークン CALMI) 計算終了の判定 不等流計算(③サブルーチン CALH) u_{*} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 CALWF :降速度 w_{f} の計算する 解 説 w_{f} の計算 w_{f} を m 単位にしている
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 dから枕 行番号 124 125 ③サブルーチンC 示筮端計算	にはないの。 計算終了の判定 不等流計算(③サブルーチン CALH) u_{a} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算する 解 説 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算
74 78~79 83~85 89 93~84 98 100 ②サブルーチン C 粒径 d から枕 行番号 124 125 ③サブルーチン C 不等流計算 行来早	にはないの日本(の) アル・ファン・ファン (ALM)) 計算終了の判定 不等流計算(③サブルーチン CALH) u_{e} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算する 解 W_{f} の計算 w_{f} をm単位にしている ALH (1階のニュートン法)
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から枕 行番号 124 125 ③サブルーチンC 不等流計算 行番号	にはないの日本(の) アル・ファン・ファン (の) 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算 w_{f} をm単位にしている ALH (1 階のニュートン法) 解 下流側の計算
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から枕 行番号 124 125 ③サブルーチンC 不等流計算(行番号 157~165 171~174	にはないの日本(の) アンバークン CALMI) 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン POUT) Δz の計算(⑤サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算 w_{f} を m単位にしている ALH (1 階のニュートン法) 解 下流側の計算 上流側の計算
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から拭 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177	には地区 切っています (⑥ アフル フラ CALMI) 計算終了の判定 不等流計算(③ サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥ サブルーチン CALQB) 計算結果の出力(④ サブルーチン POUT) Δz の計算(⑤ サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算 w_{f} をm単位にしている ALH (1 階のニュートン法) 解 下流側の計算 上流側の計算 収束条件による判定
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から決 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181	しいっては、 いいっては、 いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から決 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181 ④サブルーチンP	しいってないの 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑥サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算する 解 w_{f} をm単位にしている ALH (1階のニュートン法) 解 定流側の計算 収束条件による判定 ニュートン法による Δh の計算 OUT
 74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から決 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181 ④サブルーチンP 計算結果の出 	しいってないの 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑥サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算する 解 w_{f} をm単位にしている ALH (1階のニュートン法) 解 定流側の計算 止流側の計算 レ流側の計算 レ流側の計算 レ流側の計算 ロ東条件による判定 ニュートン法による Δh の計算 OUT お
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から決 行番号 124 125 ③サブルーチンC 不等流計算の 行番号 157~165 171~174 175~177 178~181 ④サブルーチンP 計算結果の出 ⑤サブルーチンC 河床変動量	しいってないの。 しいってないの。 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン POUT) Δz の計算(⑥サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算 w_{f} を m 単位にしている ALH (1階のニュートン法) 解 説 下流側の計算 収束条件による判定 ニュートン法による Δh の計算 OUT ΔDZ zの計算 zの計算 zの計算
 74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から沈 行番号 124 125 ③サブルーチンC 不等流計算(行番号 157~165 171~174 175~177 178~181 ④サブルーチンC 河床変動量入 行番号 	しいってないの日本(の) アクル クラン (ロース) 計算終了の判定 不等流計算(③サブルーチン CALH) u_o の計算 τ_* および q_B の計算(⑥サブルーチン POUT) Δz の計算(⑥サブルーチン CALDZ) 時間の更新 ALWF (降速度 w_f の計算する 解 説 W _f の計算 w_f を m 単位にしている ALH (1階のニュートン法) 解 説 下流側の計算 上流側の計算 山液側の計算 レ流側の計算 「以本条件による判定 ニュートン法による Δh の計算 OUT (力 ALDZ zの計算 解 説
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から沈 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181 ④サブルーチンC 河床変動量Δ 行番号 263	しいってないの 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 $L流側の計算 上流側の計算 u_{x}条件による判定= a - トン法による \Delta hの計算OUTb力ALDZz$ の計算 $(q_{s}B)_{-}(q_{s}B)_{-}, 0$ 計算
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から沈 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181 ④サブルーチンC 河床変動量Δ 行番号 263 264	しいってないの 日本語をする。 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン POUT) Δz の計算(⑥サブルーチン CALDZ) 時間の更新 ALWF 二降速度 w_{f} の計算する 解 説 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 $L流側の計算 上流側の計算 u_{\pi}条件による判定= a - トン法による \Delta hの計算OUTb$ 力 ALDZ zの計算 $(q_{g}B)_{r-1}(q_{B}B)_{r-1}$ の計算 差分式による Δz の計算
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から沈 行番号 124 125 ③サブルーチンC 不等流計算(行番号 157~165 171~174 175~177 178~181 ④サブルーチンC 計算結果の出 ⑤サブルーチンC 河床変動量Δ 行番号 263 264 267	しいっかしている。 には、 になっている にないる にないる にないる にないる にないる にないる にないる にな
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から沈 行番号 124 125 ③サブルーチンC 不等流計算(行番号 157~165 171~174 175~177 178~181 ④サブルーチンC 計算結果の出 ⑤サブルーチンC 河床変動量2 行番号 263 264 267 ⑥サブルーチンC	しいって、 しいって、 には、 には、 ないの 計算総丁の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 L流側の計算 上流側の計算 $L流側の計算u 束条件による判定 = a - F > 法による \Delta hの計算OUTb DALDZzの計算(q_{B}B)_{i} - (q_{B}B)_{i-1}の計算河床高zの更新ALQB$
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 d から液 行番号 124 125 ③サブルーチンC 不等流計算(行番号 157~165 171~174 175~177 178~181 ④サブルーチンC 計算結果の出 ⑤サブルーチンC 河床変動量2 行番号 263 264 267 ⑥サブルーチンC	しいったしている 計算終了の判定 不等流計算(③サブルーチン CALH) u_{o} の計算 τ_{*} および q_{B} の計算(⑥サブルーチン CALQB) 計算結果の出力(④サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 深速度 w_{f} の計算する 解 説 下流側の計算 w_{f} 空 m 単位にしている ALH (1階のニュートン法) 解 形 下流側の計算 上流側の計算 上流側の計算 $u \pi 条件による判定$ $= ュ - トン法による \Delta h の計算OUTb TALDZz$ の計算 解 説 $(q_{B}B)_{r}-(q_{B}B)_{r-1}$ の計算 差分式による Δz の計算 河床高 z の更新 ALQB
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 dから洗 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181 ④サブルーチンP 計算結果の出 ⑤サブルーチンC 河床変動量 Δ 行番号 263 264 267 ⑥サブルーチンC Meyer-Peter 行番号	しいっとしてのションティンシン しんしい (の) 日本 (の) アクル クラン (ALM) 計算終了の判定 不等流計算 (③サブルーチン (ALH) u_{e} の計算 τ_{e} および q_{B} の計算 (⑥サブルーチン POUT) Δz の計算 (⑤サブルーチン CALDZ) 時間の更新 ALWF (⑥サブルーチン CALDZ) 時間の更新 ALWF (◎ 中ブルーチン CALDZ) 時間の更新 ALWF (◎ 中ブルーチン CALDZ) 時間の更新 ALDZ zの計算 p_{T} 流側の計算 u_{T} 次値の計算 u_{T} 条件による判定 $= z - F > \chi$ 法による Δh の計算 OUT AD ALDZ zの計算 解 \widehat{R} \widehat
74 78~79 83~85 89 93~84 98 100 ②サブルーチンC 粒径 dから洗 行番号 124 125 ③サブルーチンC 不等流計算 行番号 157~165 171~174 175~177 178~181 ④サブルーチンP 計算結果の出 ⑤サブルーチンC 河床変動量 Δ 行番号 263 264 267 ⑥サブルーチンC Meyer-Peter 行番号 289	しいったしているの 計算終了の判定 不等流計算(③サブルーチン CALH) $u_{,}$ の計算 τ_{*} および q_{B} の計算(⑥サブルーチン POUT) Δz の計算(⑤サブルーチン CALDZ) 時間の更新 ALWF 降速度 w_{f} の計算する 解 説 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 w_{f} の計算 u_{r} 次側の計算 上流側の計算 u_{r} 条件による判定 = トン法) PT ALDZ zの計算 fr m $(q_{B}B)_{f} - (q_{B}B)_{f-1}$ の計算 MR E MR

19 TIM=0.0 $if^* \rightarrow f^* / - f^* = 0.0$	1TM=1		22 ***** 9*'')/) 7*'9 *****	50 DO 110 I-NI 1 -1	$\begin{array}{cccc} 0 + & DO & 110 & J - N_0 & 1, & -1 \\ cc & & & VD(1) = (NJ - 1) * DY \\ \end{array}$	$\mathbf{R}(\mathbf{I}) = \mathbf{I}0$	2 (1) = K P(1)/1000	11. (KP (J).GT.1000AND.KP (J).LE.1500.) THEN	Z(J) = Z(J) + (KP(J) - 1000.)/1000.	00 END IF	$F = \frac{1}{7} (KP(J), G(T) 500, AND, KP(J), LT, 2000,) = THEN$	r = r = r = r = r = r = r = r = r = r =	4 110 CONTINUE	5	56 ****** WF *******	8 CALL CALWF (D, WF)	90	11 22 200 CONTINUE	13 14 IF (TIM.GT.ETIM) GO TO 900 $(1/2\pi)^{1/2} j^{1/2} / \sqrt{2\pi} l^{2/2}$	75 2010	11 moves 1/1/1/ moves	18 H0 = 3.02	99 CALL CALH (H, Z, B, Q, SN, H0, G, DX, EPS, IE, NJ) 17μη π/ ω	****** SN ****** [1	12	$\begin{array}{llllllllllllllllllllllllllllllllllll$	55 210 CONTINUE	26 	s/ ***** QB *****	9 CALL CALQB(NJ, S, G, D, US, QB, TS) 1QB / 7/1+/2	00 01 ****** PRINT OUT ******	2	35 CALL POUT $(!_{P/y}^{\gamma}) = \gamma_{-x^{\gamma}y}^{\gamma} =$	55	06 ***** DZ *****
4	5	5	ις, τ		ο v			5	5	12/3/2	0 4 <i>t t t t t t t t t t</i>	iカワノヘベ 6	i)	$i \rightarrow \psi / \psi / \psi$ (U*) 6	iフンソシュソ ショ?(I.*) iカンショウ ~ンドウ リョウ(DZ) 6	0 0 0	: 1-1) [エネルギ. – コウハ・イ		$(f_{\gamma}\eta_{\alpha} \ \dot{\gamma}_{\alpha}\eta_{\beta}) = f$ TIME 7		[y' = yy] = f - yyf	$\frac{1}{1} \int \frac{1}{2} \int \frac{1}$	1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	8 8	1915 74.70 8 8	IDELTA X 8	8 1	IDELTA T	~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		 6 6 6 6 6 6 6 6 6 6 6 6 66 10 10 10 10 10 10 10 10 10 10 10 10 10	6 6	6	6 6
	*****		ケイナン		1		52.7.6	*********		I H(60)	(09)Z	I B(60)	V QB (60)	N US (60)	N DZ(60)		(00)	NU PTIM(6)	M(0., 0., 1., 4., 12., 24./				0.4									±1	DT 3 10	I = 3, IO I) = PTIM (I) * 3600	IUE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	900 CONTINUE STOP END CAL OF WF CAL OF WF CAL OF WF SUBROUTINE CALWF(D, WF) DD=Ds100
136 137 138	oosse soosse
137 138	SUBROUTINE CALH(H, Z, B, Q, SN, H0, G, DX, EPS, IE, NJ)
138 139	SUBROUTINE CALH(H, Z, B, Q, SN, H0, G, DX, EPS, IE, NJ)
139 140	DIMENSION H (60) 12432 (OUT)
140 141	DIMENSION H(60) $1 \pm 7/27$ (OUT) DIMENSION Z(60) $1 \pm 7/2 \pm 6$ (N)
141 142	DIMENSION Z(60) $1\pi y_3 gy $ (1N) DIMENSION D(60) $1\pi y_{3} gy $ (1N)
142	DIMENSION B(60) $i_{1}j_{7}y_{N}$ (IN)
143	
144	REAL IE(60) $i_{T} \pi h \pi^{*} - \pi h \pi^{*} \eta$ (OUT)
145	REAL O $[1]_{\pm}\dot{p}]_{\pm}\dot{\eta}$ (IN)
217	$\mathbf{MUAL} \mathbf{V} \qquad \qquad$
146	REAL SN 1.77 7.77 (LN)

(IN) (IN) (IN) (IN) (N)	(IN) <i>ά</i> χ								I)+SNN*QQ*DX/(2*BB*H3								SNN*QQ*DX/(2.*BB*H3)				(1) H [*] *(1) H [*]					((2))								
はりまかが、 スイイ ビジェングリョク ガン 第102 - 10 ビンテイ ジョョウノ	1.X.N		Ĩ			GO TO 110			0./3.) JJ)+QQ/(2.*G*BB*HF							3.)	QQ/(2.*G*BB*HH) —		T.EPS) THEN	G*BB*H(J) **3))*SININ*QQ*DA/ (BB* 'DH1+DFDH?	H/DFDH				(B (I) *B (I) *H (I) ** (******	
REAL H0 REAL G REAL DX REAL EPS	INTEGER NJ	QQ=Q*Q SNN=SN*SN		H(NJ) = H0 - Z(N)	JJ=J+1	IF (J.EQ.NJ)	HH=H(JJ)**2	BB=B(JJ) **2	P = H = CH (II) +Z (II) +Z (II) +Z (II)		H(f) = H(f)	120 CONTINUE		HH=H(J) ** 2	BB=B(J) **2	H3 = H(J) ** (10/3)	FU = H(J) + Z(J) + EU = EI - ED		IF (ABS(FH).G	DFDH1 = QQ/(0)	DFDH2 = (5./5.) DFDH = 1 - DF	H(J) = H(J) - F	GO TO 120	END IF	110 CONTINUE	IE(I) = SNN*OO/	100 CONTINUE		RETURN	END			******	
147 148 149 150	151 152 153	154 155	156	157 158	159	160	161	163	104 165	166	167	168	170	171	172	173	174 175	176	177	178	1/9	181	182	183	184	186	187	188	189	190	191	192	761	195

240 246				
247	******************			
248	*			
249	* DZ / ħイサン			
250	*			
251	******************			
797				
253	SUBROUTINE CALDZ(NJ, I	RAMDA, DT, DZ,	Z, B, QB, DX)	
+07		14	(U)	
255	DIMENSION Z(60)	(カショウ)	(IO) (IO)	
256	DIMENSION DZ (60)	ZCI	(DUT)	
257	DIMENSION B(60)	100~	(II)	
258	DIMENSION QB (60)	(iáci	<i>а</i> р 4 Јар	Ê
607				
260	DO $100 J = 1$, NJ			
261	JJ = J - I			
262	IF (J.EQ.1) GO TO 110			
263	DQB = QB (J) * B (J) - QF	3 (JJ) *B (JJ)		
264	DZB = 1./(1 RAMDA)	*DQB*DT/(DX*B(J	()	
265	110 CONTINUE			
266	DZ(J) = -DZB			
267	Z (J) = Z (J) + DZ (J)			
268	100 CONTINUE			
269				
270	RETURN			
271	END			
272				
273				
274				
275	*************************			
216	*			
	+ CAI OF OB(34)-44)			
117	* CAL OF QB(////a///)			
017	* *******************************			
280				
281	SUBROUTINE CALOB(NJ. 3	S. G. D. US. OB.	TS)	
282				
283	DIMENSION OB (60)	1.701-04	(OLTT)	
284	DIMENSION IIS (60)		(II)	
285	DIMENSION TS (60)	E.	(IN)	
286				
787	TSC = 05			
288	DO 100 J=1. NJ			
289	TS(1) = IIS(1) **2/(S*G*D)			
290	OB(J) = 8.*(TS(J) - TSC)**	1.5*SORT (S*G*D**	3)	
291	100 ONTINUE			
292				
293	RETURN			